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Abstract. In the paper, we present a prototype implementation of the
TCP/IP software stack over the Angara high performance interconnect.
Our approach is to use the standard TCP/IP stack implementation from
the Linux kernel, while we implement in the Linux kernel an Ethernet
network device driver for the Angara interconnect adapter. The paper
presents the latency and bandwidth results and the results of the IO500
suite benchmarks of the distributed storage deployed with BeeGFS on
20 nodes of the Fisher supercomputer in JIHT RAS.
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1 Introduction

Parallel file system (PFS) is one of the most essential building blocks of the
persistent storage in high performance computing (HPC) infrastructure. It pro-
vides fast global access to large volumes of data and ensures data persistence
through a high number of distributed storage devices. One of the most critical
components having a direct impact on the performance of HPC systems and
PFSs is the interconnection network (interconnect). Parallel file system clients
accessing data from the file system, communicate with the storage servers via
any TCP/IP based connection or via remote direct memory access (RDMA) ca-
pable interconnects like InfiniBand [1], Omni-Path [2], Slingshot [3] and RDMA
over Converged Ethernet (RoCE), which is a part the Infiniband specification
[1].

Currently, the market is dominated by Infiniband. InfiniBand is an open stan-
dard for high performance network communications. The most commonly used
InfiniBand implementations rely on NVIDIA Mellanox hardware, with switches



2 Y. Goncharuk et al.

typically arranged in a fat tree topology. HDR 200 Gb/s is the sixth gener-
ation of the NVIDIA InfiniBand architecture. HDR has 0.6 us low-level la-
tency [4], the obtained MPI latency is 1 us [5]. Infiniband can support TCP/IP
protocol as IPoIB (IP over Infiniband), which implements regular networking
(through the Linux kernel stack) over Infiniband fabric by wrapping L3/L4
TCP/IP headers with Infiniband headers. Note that L2/L3/L4 layers correspond
to the 2nd/3rd/4th layers of the OSI model [6]. The second way is RoCE, which
implements RDMA over Ethernet fabric by wrapping Infiniband packets with
L2/L3/L4 headers.

Cray (HPE) released the Slingshot interconnection network [3]. Slingshot
uses an optimized Ethernet protocol, which allows it to be interoperable with
standard Ethernet devices while providing high performance to HPC applica-
tions. Slingshot switches have ports with 200 Gbit/s each and support arbitrary
network topologies, the default topology is Dragonfly [7]. The low-level latency
of Slingshot is 1.85 us between two nodes.

The focus of our work is the Angara interconnect. Angara [8,9] is the low-
latency, high bandwidth interconnect with 4D torus topology, the obtained MPI
latency between two adjacent nodes is 0.85 us. The Angara-C1 and Desmos [9]
cluster systems are based on the Angara interconnect. During the last several
years, the Angara interconnect has obtained a history of practical usage [9,10,11],
[12,13].

In this paper, we present a prototype implementation of the TCP/IP software
stack over the Angara high performance interconnect. For the sake of clarity, our
approach is to use the standard TCP/IP stack implementation from the Linux
kernel, while we implement in the Linux kernel the Ethernet device driver for
the Angara interconnect adapter. The goal is to support parallel file systems on
the Angara-based HPC systems.

PFS performance evaluation with network aspects are quite rare in com-
puter science. Papers [14] and [15] with BeeGFS, Ceph, GlusterFS, OrangeFS
PFSs performance analysis should be highlighted. Performance improving of
large scale geophysical applications using BeeGFS is presented in [16]. Infini-
band and TCP/IP software stack are used as a network transport. The emer-
gence in 2017 of the IO500 list [17] played a big role in drawing attention to PFS
performance analysis. IO500 is a comprehensive benchmark suite to track stor-
age performance and storage technologies of supercomputers, organized by the
Virtual Institute for I/O (VI4IO) [18]. Several works [19,20] address the IO500
performance on HPC systems.

The paper is structured as follows. In section 2 the brief Angara interconnect
architecture is given, then the implementation of the Ethernet network device
over Angara is described. Section 3 presents the hardware configuration of the
Fisher supercomputer and software settings. Then the results of bandwidth,
latency and IO500 tests are given and discussed. Section 4 concludes the paper.
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2 The Angara TCP/IP Implementation

The TCP/IP software stack for the Angara interconnect is supported by the stan-
dard TCP/IP implementation from the Linux kernel and three implemented in
this work Linux kernel modules: angara netdev, angara rdma and angara router.
The main module is angara netdev, which implements the Ethernet interface,
i.e. the channel or second layer of the OSI model [6].

2.1 The Angara Interconnect Architecture

The Angara interconnect is a Russian-designed communication network with
4D torus topology. The interconnect ASIC was developed by JSC NICEVT and
manufactured by TSMC with the 65-nm process. An Angara packet format pro-
vides a possibility to address 32K nodes.
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Fig. 1: The Angara ASIC architecture.

Figure 1 presents the Angara ASIC chip, which consists of an adapter and a
router. The router contains 8 link blocks that are connected via a crossbar. The
crossbar can simultaneously transmit flits (128 bits) from links if there are no
conflicts.

The Angara chip supports simultaneous operations with multiple threads/processes
of a user task; it is implemented as several injection channels available for use
by independent packet buffers.

Each node has a dedicated memory region available for remote access from
other nodes. The network adapter at the hardware level supports PIO and
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RDMA modes. In PIO mode a processor creates network packets and sends them
to the network using Angara PUT operation, thus consuming the resources of a
processor core. On the contrary, RDMA (Remote Direct Memory Access) mode
does not involve the CPU. Rather, the Angara adapter moves data directly to
and from memory, bypassing the CPU altogether. Angara has RDMA write and
read operations.

2.2 Ethernet Network Device Driver Implementation

The Ethernet network device for the Angara interconnect is implemented by
three Linux kernel modules: angara netdev, angara rdma and angara router. The
main module is angara netdev, which implements the Ethernet interface. The
angara netdev module uses functions that are exported by the angara rdma and
angara router kernel modules. The angara rdma module implements a native
Angara network messaging interface with RDMA support in the kernel space.
The angara router module manages hardware resources of the Angara network
adapter, including access to injection pipelines, control registers, etc.

The angara netdev module is implemented as an Ethernet device driver with
the following features. The Media Independent Interface (MII) [21] features,
which include physical layer control and media access link layer control, are
not implemented. These functions include managing the speed of the network
adapter (10M / 100M / 1G / 10G / 40G), duplex mode (Full / Half), chang-
ing the Ethernet frame size (MTU) during the driver execution, monitoring the
state of the physical link. The physical layer in the Angara network is custom de-
signed, and at the moment there is no need to implement the standard Ethernet
capabilities for managing the physical layer. In the future, these functions may
be implemented. Also, the ARP protocol is implemented entirely in software.

local

remote

Receive Buffers Send Buffer

...

angara_netdev

rd wr

rd wr

Fig. 2: The angara netdev module memory scheme.
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Receiving and sending data in the angara netdev module corresponds to the
implementation of the Ethernet layer. The angara netdev module in memory on
each node has a receive ring buffer for each other network node, the default buffer
size is 8192 4 KB packets, see Fig. 2. There is a ring buffer for sending data to
for all other nodes, its size is 8192 packets of a maximum 4 KB size. Local read
and write counters and remote read and write counters are supported for each
receive buffer. Also in the angara netdev module there is a Forwarding Database
(FDB) table with mapping MAC addresses and physical numbers (NODENUM)
of nodes in the Angara network.

The message send consists of the following stages:

1. The angara netdev module (angara0 interface) receives a socket buffer from
the Linux kernel, which is represented by the structure sk_buff [22]. The
IP address of the recipient is retrieved from the resulting structure.

2. Using the retrieved destination IP address, the ARP table is searched for
MAC address by IP address.

3. The received MAC address of the recipient is used to search in the FDB table
of the angara netdev module for the corresponding physical NODENUM
number of the destination node in the Angara network.

4. From the sk_buff structure data payload is retrieved, as well as its size. The
received data is combined and transmitted as the first PUT sending over the
Angara network to the node with the destination physical NODENUM num-
ber. The sending occurs with the requirement that the local write counter is
less than the remote read counter.

5. The second PUT sending to the NODENUM node includes the incremented
value of the local write counter and writes it to the corresponding memory
location of the remote write counter on the remote NODENUM node. At
the same time, the local read counter is also sent, which is written to the
remote read counter of the remote NODENUM node to inform it about how
many packets the current node has read.

If the recipient MAC address is missing, then the angara netdev module
perform a software broadcast ARP request to all possible physical nodes in the
Angara network. The received ARP-request is processed by the angara netdev
module on a node, and sends a response, which eventually ends up in the system
ARP table, and the NODENUM of the node goes into the FDB table of the
angara netdev module.

The message send can be performed in two modes:

1. Using the sending thread (parameter tx_threadless=0 of the angara netdev
module);

2. Without using the sending thread (parameter tx_threaless=1 of the an-
gara netdev module).

In the first mode, during the initialization of the angara0 network interface,
a TX thread is created, it processes the send buffer. The module’s send function
adds data to this buffer, and the TX thread performs the described transmission.
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In the second mode, the described transmission occurs immediately when the
sk_buff structure is received from the kernel, but this mode is the softirq inter-
rupt handling mode [23], and long-term processing is undesirable. Since message
latency is higher for the first mode, the second mode is used in this paper. The
current implementation uses single injection channel of the Angara ASIC. Use
of several injection channel allows to improve network bandwidth.

The message receive is organized as follows. During the raising of the an-
gara0 network interface, an RX thread is created, which permanently polls the
remote write counter of the receive ring buffer for each possible network node
and compares it to the local read counter.

The polling discipline for receive buffers by the RX thread is round robin.
During each iteration of the RX thread, if a new buffer element is found, the
tasklet is launched. A tasklet [23] is a lightweight thread that does not have its
own context, it runs in a separate kernel thread and completely performs the
receive function for the specified sender node. The total number of launched
tasklets can not be more than the total number of nodes in the network. After
data processing, in the absence of new data the tasklet is destroyed.

The tasklet processes packets on each iteration of the receive loop for the
difference between the remote write counter and the local read counter. At each
iteration of this loop, the tasklet does the following:

1. Allocates memory for the sk_buff structure, write payload to this structure.
2. Sends the created structure using the netif_rx() to the kernel network

stack, which corresponds to the 3rd layer of the OSI model.

The more participants in the data exchange, the longer delay between pro-
cessing of each individual sender node. To speed up the processing of specific
sender nodes, the angara_parts parameter (short for Angara participants) has
been introduced. This parameter allows to set the list of active members of
the Angara network, note that messages from other network nodes will be pro-
cessed with lower priority. At the same time, it is a disadvantage that the receive
buffers are created for all network nodes, and not only for active participants.
This shortcoming is planned to be eliminated in future work.

3 Experimental Evaluation

This section presents the performance evaluation of the proposed TCP/IP soft-
ware stack for the Angara interconnect on the Fisher supercomputer.

3.1 Hardware and Software Setup

The main details about the Fisher supercomputer are given in Table 1 and illus-
trated in Figure 3. Fisher has a segment with Infiniband FDR and air cooling and
a segment with Angara and immersion cooling [24]. The Angara segment is di-
vided into two equal size partitions, the first one is based on the first AMD EPYC
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Table 1: The main characteristics of the segment of the Fisher supercomputer
used for EoA testing.

Compute Nodes ang[1-20]

Chassis Gigabyte H262-Z62

Processor / Memory 2 x Epyc 7301 16c / 128 GB

Storage Apacer AS2280P2 240GB

Interconnect Angara switch, 1 Gbit/s Ethernet

OS openSUSE Leap 15.2

Kernel version 5.3.18-lp152.87-preempt

MPI MPICH 3.2 for Angara

processor microarchitecture generation called Naples, the second one is based on
the second AMD EPYC processor microarchitecture generation called Rome.
Each Angara partition has an Angara ES8433 switch, each node of the Angara
segment has a low-profile Angara ES8432 network adapter. ES8433 switches are
connected by 4 links.

For the evaluation we have initialized Ethernet Angara interface on 20 nodes
with AMD EPYC 7301 processers.

BeeGFS [25] is a parallel cluster file system. It was originally developed for
High Performance Computing. BeeGFS transparently spreads user data across
multiple servers. BeeGFS separates metadata from user file chunks on the servers.
The metadata is the “data about data”, such as access permissions, file size and
the information about how the user file chunks are distributed across the storage
servers. BeeGFS clients accessing data from the file system, communicate with
the storage servers via any TCP/IP based connection or via RDMA-capable
networks.

We use quick deploy with BeeGFS On Demand (BeeOND) option with de-
fault parameters that allows to run BeeGFS instances temporary exactly for the
runtime of the compute job. BeeGFS version is 7.2.3.

Angara sw
itch 

Gigabit Ethernet switch 

2x EPYC
7301

128 GB 
RAM

Angara
NIC

Supercomputer FISHER
the 20 nodes segment
used for testing of EoA

240 GB 
NVME

Fig. 3: The segment of the Fisher supercomputer used for EoA testing.
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3.2 Benchmarks

We use the MPI-based osu latency benchmark, version 5.9 for latency evaluation
on 2 neighbouring nodes. For bandwidth evaluation we use iperf with 5 parallel
client threads.

Table 2: IO500 benchmark suite components.
Component Tests Description

IOR ’easy’
ior easy write,
ior easy read

Bandwidth for well-formed
large sequential I/O
patterns

IOR ’hard’
ior hard write,
ior hard read

Bandwidth for unaligned
(47001 bytes) operation
from each client process to
a single file

mdtest ’easy’
mdtest easy delete,
mdtest easy stat,
mdtest easy write

Metadata operations on
0-byte files, using separate
directories for each MPI
task

mdtest ’hard’

mdtest hard delete,
mdtest hard stat,
mdtest hard write,
mdtest hard read

Metadata operations on
small (3901 byte) files in a
shared directory

Find find Finding relevant files
through directory traversals

IO500 [17] is a comprehensive benchmark suite to track storage performance
and storage technologies of supercomputers. The IO500 benchmark suite con-
sists of data (IOR) and metadata (mdtest) components as well as a parallel
namespace scanning test (find), and calculates a single ranking score for com-
parison. Table 2 provides a list of IO500 tests. The tests represent the best and
worst possible scenarios for bandwidth and metadata in the form of ’easy’ and
’hard’ use cases respectively. The individual IO500 tests are combined as a score
using a geometric mean to find the central tendency among the various met-
rics. While a top score does not indicate that all applications can achieve that
performance, the range from the ’hard’ to ’easy’ on bandwidth and metadata
gives bounds for users can expect [19]. The hard and easy tests are carefully
interleaved and timed to 5 minutes for create-style operations representing the
typical 90% forward progress requirement used in platform purchases.
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Fig. 4: The obtained osu latency results on two Fisher nodes. EoA – Ethernet
over Angara, Angara – native Angara protocol, 1 GbitE – 1 Gbit/s Ethernet
network.
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Fig. 6: IO500 results for the bandwidth IOR tests of the BeeOND distributed
storage (16 nodes with 1 storage target per node) as a dependence on the number
of client Fisher nodes (at 16 MPI processes per node).

3.3 Performance Results

Figure 4 shows the obtained osu latency results on two Fisher nodes. For 0-byte
message we have obtained for Ethernet over Angara (EoA) 19 us, for native
Angara protocol (Angara) 1.7 us, for 1 Gbit/s Ethernet (1 GbitE) 25.4 us. Note
that Angara interface is initialized on all 20 Fisher nodes. The large performance
gap between for Ethernet over Angara and native Angara shows the possibility
of further improvement of the latency.

The bandwidth of the Ethernet over Angara obtained by the iperf3 test is
approximately 15 Gbit/s.

Table 3: IO500 performance results on the Fisher supercomputer.
Test Metric 1 GbE EoA EoA / 1 GbE

ior-easy-write GB/s 0.46 2.61 5.69

mdtest-easy-write kIOPS 15.18 17.17 1.13

ior-hard-write GB/s 0.17 0.42 2.44

mdtest-hard-write kIOPS 5.10 3.8 0.75

find kIOPS 175.19 124.55 0.71

ior-easy-read GB/s 0.45 6.5 14.5

mdtest-easy-stat kIOPS 74.60 73.69 0.99

ior-hard-read GB/s 0.46 2.91 6.38

mdtest-hard-stat kIOPS 67.31 70.3 1.04

mdtest-easy-delete kIOPS 14.20 10.18 0.72

mdtest-hard-read kIOPS 14.59 15.03 1.03

mdtest-hard-delete kIOPS 4.19 5.95 1.42

Total score 2.8 6.35 2.38

Figure 5 shows the dependence of the IOR tests results from the IO500 suite
on the number of nodes that form the distributed storage using BeeOND. These
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tests have been performed for the fixed number of 4 client nodes with 16 client
processes per node. We see that io-easy-read and io-hard-read saturate already
for 8 and 4 storage nodes, respectively. This saturation can be explained by the
limited aggregated bandwidth of 4 EoA links that come to 4 client nodes for large
messages (io-easy-read) and 47 KB messages (io-hard-read). The bandwidth of
the Angara link does not limit the io-easy-write performance, for 1–4 nodes the
main bottleneck is the hard disk performance for write operation.

Figure 6 show the dependence of the same IOR tests results on the number
of client nodes. These tests have been performed for the fixed number of 16
storage nodes with 1 storage target per node. We see that using 4 client nodes
on io-easy-read one can not saturate the bandwidth of this distributed storage.

Table 3 shows IO500 performance results for the Fisher supercomputer. We
have deployed BeeGFS storage on 16 Fisher nodes, including 1 metadata node.
We use 4 client nodes, 16 processes are executed on each client node. The total
number of client processes is 64. The advantage of Ethernet over Angara net-
work (EoA) on large messages is approximately 15 times compared to 1 Gbit/s
Ethernet (1 GbE). The relative read results for EoA are better than the write
results, this can be explained by the bottleneck in the hard disk’s poor write per-
formance. For metadata and find tests the results are approximately the same
on EoA and 1 GbE, except for mdtest-easy-write and mdtest-hard-write tests.
The Angara’s power is low latencies, which are important for small metadata
requests, therefore detailed profiling is needed.

4 Conclusion

This work reports of a fully functional TCP/IP software stack implemented for
the Angara interconnect using the prototype Ethernet over Angara driver imple-
mentation. The benchmarks of the distributed storage based on this EoA proto-
type do not show any evident performance limitations that could be attributed
to the performance of the Angara interconnect within the EoA framework.

In our future work we plan to address the TCP/IP over Angara bandwidth,
latency as well as a detailed profiling of IO500 results. The next Ethernet over
Angara implementation will use multiple injection channels and RDMA opera-
tions, which will allow to improve the network bandwidth.
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